
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

Newly Released Capabilities in Distributed-memory SuperLU Sparse Direct
Solver

XIAOYE S. LI∗, PAUL LIN∗, and YANG LIU∗, Lawrence Berkeley National Laboratory, USA

PIYUSH SAO, Oak Ridge National Laboratory, USA

We present the new features available in the recent release of SuperLU_DIST, Version 8.0.0. SuperLU_DIST is a distributed-memory
parallel sparse direct solver. The new features include (1) a 3D communication-avoiding algorithm framework which trades off
inter-process communication for selective memory duplication, (2) multi-GPU support for both NVIDIA GPUs and AMD GPUs, and
(3) mixed precision routines that perform single precision LU factorization and double precision iterative refinement. Apart from the
algorithm improvements, we also modernized the software build system to use CMake and Spack package installation tools to simplify
the installation procedure. Throughout the paper, we describe in detail the pertinent performance-sensitive parameters associated
with each new algorithm feature, show how they are exposed to the users, and give general guidance of how to set these parameters.
We illustrate that the solvers performance both in time and memory can be greatly improved after systematic tuning of the parameters,
depending on the input sparse matrix and underlying hardware.

CCS Concepts: •Mathematics of computing→ Solvers.

Additional Key Words and Phrases: Sparse direct solver, communication-avoiding, GPU, mixed-precision

ACM Reference Format:
Xiaoye S. Li, Paul Lin, Yang Liu, and Piyush Sao. 2022. Newly Released Capabilities in Distributed-memory SuperLU Sparse Direct
Solver. In . ACM, New York, NY, USA, 22 pages. https://doi.org/XXXXXXX.XXXXXXX

Contents

Abstract 1
Contents 1
1 Overview of SuperLU and SuperLU_DIST 2
2 3D Communication-Avoiding Routines 4
2.1 The 3D Process layout and its performance impact 5
3 OpenMP Intra-node Parallelism 7
3.1 OpenMP Performance tuning 7
4 GPU-enabled Routines 8
4.1 2D SpLU GPU algorithm and tuning parameters 9
4.2 3D SpLU GPU algorithm and tuning parameters 10
4.3 2D SpTRSV GPU algorithm 10
5 Mixed-precision Routines 11

∗All the authors contributed equally to this article.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2022 Association for Computing Machinery.
Manuscript submitted to ACM

1

https://doi.org/XXXXXXX.XXXXXXX

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Xiaoye S. Li, Paul Lin, Yang Liu, and Piyush Sao

6 Summary of Parameters, Environment Variables and Performance Impact 14
6.1 3D CPU SpLU parameter tuning 15
6.2 2D GPU SpLU parameter tuning 15
6.3 3D GPU SpLU parameter tuning 17
7 Fortran 90 Interface 17
8 Installation with CMake or Spack 19
8.1 Dependent external libraries 19
8.2 CMake installation 19
8.3 Spack installation 21
Acknowledgments 21
References 21

1 OVERVIEW OF SUPERLU AND SUPERLU_DIST

SuperLU contains a set of sparse direct solvers for solving large sets of linear equations AX = B [5]. Here A is a square,
nonsingular, n ×n sparse matrix, and X and B are dense n ×nrhs matrices, where nrhs is the number of right-hand sides
and solution vectors. The matrix A need not be symmetric or definite; indeed, SuperLU is particularly appropriate for
unsymmetric matrices, and it respects both the unsymmetric values as well as the unsymmetric sparsity pattern. The
routines appear in three different libraries: sequential (SuperLU), multithreaded (SuperLU_MT) and distributed-memory
parallel (SuperLU_DIST). They can be linked together in a single application. All three libraries use variations of
Gaussian elimination (LU factorization) optimized to take advantage of the sparsity of the matrix and modern high
performance computer architectures (specifically memory hierarchy and parallelism). The SuperLU_DIST library is
implemented in ANSI C, using MPI for communication, OpenMP for multithreading, and CUDA (or HIP) for NVIDIA
(or AMD) GPUs. The library includes routines to handle both real and complex matrices in single and double precisions,
and some functions with mixed precisions. The parallel algorithm consists of the following major steps.

(1) Preprocessing
(2) Sparse LU factorization (SpLU)
(3) Sparse triangular solutions (SpTRSV)
(4) Iterative refinement (IR) (optional)

The preprocessing in Step 1 transforms the original linear system Ax = b into Āx = b̄, so that the latter one has
more favorable numerical properties and sparsity structures. In SuperLU_DIST, typically A is first transformed into
Ā = PcPrDrADcP

T
c . Here Dr and Dc are diagonal scaling matrices to equilibrate the system, which tends to reduce

condition number and avoid over/underflow. Pr and Pc are permutation matrices. The role of Pr is to permute rows of the
matrix to make diagonal elements large relative to the off-diagonal elements (numerical pivoting). The role of Pc is to to
permute rows and columns of the matrix to minimize the fill-in in the L andU factors (sparsity reordering). Note that
we apply Pc symmetrically so that the large diagonal entries remain on the diagonal. With these transformations, the
linear system to be solved is: (PcPrDrADcP

T
c)(PcD

−1
c)x = PcPrDrb. In the software configuration, each transformation

can be turned off, or can be achieved with different algorithms. Further algorithm details and user interfaces can be
found in [5, 7]. After these transformations, the last preprocessing step is symbolic factorization which computes the
distributed nonzero structures of the L andU factors, and distributes the nonzeros of Ā into L andU .

2

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

SuperLU_DIST Release version-8 Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

This release paper focuses on the new capabilities in Steps 2-4 in SuperLU_DIST. Throughout the paper, when there
is no ambiguity, we simply refer to the library SuperLU_DIST as SuperLU.

Before the new Version-7 release (2021), the distributed memory code had been largely built upon the design in the
first SuperLU_DIST paper [6]. The main ingredients of the parallel SpLU algorithm are:

• supernodal fan-out (right-looking) based on elimination DAGs,
• static pivoting with possible half-precision perturbations on the diagonal (GESP) [6],
• 2D logical process arrangement for non-uniform block-cyclic mapping, based on the supernodal block partition,
and
• loosely synchronous scheduling with lookahead pipelining [12].

The parallel SpTRSV uses a block-cyclic layout for the L and U matrices as in the results of SpLU. It also uses a
message-driven asynchronous and dynamically scheduled algorithm—designed to reduce the communication and
latency costs. The user can optionally invoke a few steps of iterative refinement to improve the solution accuracy.

The routines in SuperLU are divided into driver routines and computational routines. The routine names are inspired
by the LAPACK and ScaLAPACK naming convention. For example, the 2D linear solver driver is pdgssvx, where ‘p’
means parallel, ‘d’ means double precision,1 ‘gs’ means general sparse matrix format, and ‘svx’ means solving a linear
system. Below is a list of double precision user-callable routines.

• Driver routines: pdgssvx (driver for the old 2D algorithms), pdgssvx3d (driver for the new 3D algorithms
in Section 2).
• Computational routines: pdgstrf and pdgstrs are respectively triangular factorization SpLU and triangular
solve in the 2D process grid. pdgstrf3d is triangular factorization SpLU in the 3D process grid. These routines
take a preprocessed linear system as an input. An experienced user can use them directly in the application code
as they can provide greater flexibility. For a new user, however, using them can be cumbersome and error-prone.
We recommend using driver routines, which are easier to use.
• The pddrive and pddrive3d examples in the EXAMPLE/ directory call the respective drivers pdgssvx and
pdgssvx3d to solve linear systems. Other examples in the same directory, such as pddrive1, pddrive2, etc.,
illustrate how to reuse the preprocessing results for a sequence of linear systems with similar structures.

The Doxygen generated documentation for all the routines is available at https://portal.nersc.gov/project/sparse/superlu/
superlu_dist_code_html/. Each routine begins with a comment that breaks down input/output arguments and explains
the functions of the routine. Although the original User’s Guide contains comprehensive description of various internal
data structures and algorithms [5], it does not contain the new features presented here.

In the sections that follow, we will describe the new features which are available since Version-7. This includes the
new 3D communication-avoiding algorithm framework, multi-GPU support, mixed precision routines and support for
new build tools. Throughout the paper, we discuss all the parameters that may influence the code performance. These
parameters can be set in a compile-time "options" structure, or by environment variables (with capitalized names), the
latter of which take precedence. Section 6 gives a summary of the parameters.

1We support four datatypes: ‘s’ (FP32 real), ‘d’ (FP64 double), ‘c’ (FP32 complex) and ‘z’ (FP64 complex). Throughout the paper, we use the ‘d’ version of
the routine names.

3

https://portal.nersc.gov/project/sparse/superlu/superlu_dist_code_html/
https://portal.nersc.gov/project/sparse/superlu/superlu_dist_code_html/

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Xiaoye S. Li, Paul Lin, Yang Liu, and Piyush Sao

2 3D COMMUNICATION-AVOIDING ROUTINES

We developed a novel 3D algorithm framework for sparse factorization and triangular solutions. This new approach is
motivated by the strong scaling requirement from exascale applications. Our novel 3D algorithm framework for sparse
factorization and triangular solutions alleviates communication costs by taking advantage of the three-dimensional MPI
process grid, the elimination tree parallelism, and the communication-memory tradeoff—inspired from communication-
avoiding algorithms for dense linear algebra in the last decade.

The 3D processes grid, configured as P = Px × Py × Pz (see Fig. 3a), can be considered as Pz sets of 2D processes
layers. The distribution of the sparse matrices is governed by the supernodal elimination tree-forest (etree-forest): the
standard etree is transformed into an etree-forest which is binary at the top log2(Pz) levels and has Pz subtree-forests at
the leaf level (see Fig. 1a). The description of the tree partition and mapping algorithm is described in [11, Section 3.3].
The matrices A, L, and U corresponding to each subtree-forest are assigned to one 2D process layer. The 2D layers are
referred to as Grid-0, Grid-1, . . ., up to (Pz − 1) grids. Fig. 1b shows the submatrix mapping to the four 2D process grids.

(a) 2-level etree partition

1 2

3 4 5 6

0 0

1

3

0

1

4

0

2

5

0

2

6

Grid-0 Grid-1 Grid-2 Grid-3

A0

A1 A2

A3 A6

0

0

A4

0

A5

0

0

(b) Matrix view on 4 process grids

Fig. 1. Illustration of the 3D parallel SpLU algorithm with 4 process grids. Note that, here Ai refers to A[i :, i :]

typedef struct {
MPI_Comm comm; /* MPI communicator */
superlu_scope_t rscp; /* row scope */
superlu_scope_t cscp; /* column scope */
superlu_scope_t zscp; /* scope in third dimension */
gridinfo_t grid2d; /* for using 2D functions */
int iam; /* my process number in this grid */
int nprow; /* number of process rows */
int npcol; /* number of process columns */
int npdep; /* number of replication factor in Z-dimension */
int rankorder; /* = 0: Z-major (default)

* = 1: XY-major (need set environment variable: SUPERLU_RANKORDER=XY)
*/

} gridinfo3d_t;

Fig. 2. 3D process grid definition.

An example for calling the 3D algorithm to solve a sparse linear system is provided by the sample program
EXAMPLE/pddrive3d.c. As an initialization step, the user needs to call

superlu_gridinit3d (MPI_COMM_WORLD, nprow, npcol, npdep, &grid);

4

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

SuperLU_DIST Release version-8 Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

The SuperLU routines use a separate process group—part of the grid structure, for the MPI communication. This
prevents other communications from interfering with the MPI messages in SuperLU. In this example, a new process
group for SuperLU is built upon the MPI default communicator MPI_COMM_WORLD. In general, it can be built upon any
MPI communicator. Fig. 2 shows the C structure defining the 3D process grid.

2.1 The 3D Process layout and its performance impact

In SuperLU, a 3D process grid can be arranged in two formats: XY -major or Z -major, see Fig. 3. In XY -major format,
processes with the same XY -coordinate and different Z -coordinate have consecutive global ranks. Consequently, when
spawning multiple processes on a node, the spawned processes will have the same XY coordinate (except for cases
where Pz is not a multiple of the number of processes spawned on the node). Alternatively, We can arrange the 3D
process grid in Z-major format where processes with the same Z coordinate have consecutive global ranks. This is the
default ordering in SuperLU.

The Z -major format can be better for performance as it keeps processes in a 2D grid closer. Hence it may provide
higher bandwidth for 2D communication, typically the bottleneck in communication. On the other hand, the XY -major
format can be helpful when using GPU acceleration. This can happen since the XY-major ordering will keep more GPUs
active during ancestor factorizations. In some cases, e.g. sparse matrices from non-planar graphs, ancestor factorization
can become compute dominant, and XY-major ordering helps by keeping more GPUs active. For example, on 16 Haswell
nodes of the NERSC Cori Cray XC40, the Z-major ordering was .85-1.3× faster than the XY major ordering. Haswell
compute nodes have dual-socket 16-core 2.3 GHz Intel Xeon E5-2698v3 CPUs. Note that this performance difference is
system-dependent, depending on the hardware topology as well as the job scheduler policy of the parallel machine.

(a) 3D process grid

Px

Py

Pz

(b) “Z” and “XY” major ordering

0 1 2

3 4 5

6 7 8

9 10 11

12 13 14

15 16 17

0 2 4

6 4 5

12 7 8

1 3 5

7 9 11

13 15 17

Z-major Grid XY-major Grid

Fig. 3. A logical 3D process grid and process configuration for two types of process arrangements.

The driver routine is pdgssvx3d, with the following calling API:

void pdgssvx3d (superlu_dist_options_t *options, SuperMatrix *A,

dScalePermstruct_t *ScalePermstruct,

double B[], int ldb, int nrhs, gridinfo3d_t *grid,

/* following are output */

dLUstruct_t *LUstruct, dSOLVEstruct_t *SOLVEstruct,

double *berr, SuperLUStat_t *stat, int *info);

5

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Xiaoye S. Li, Paul Lin, Yang Liu, and Piyush Sao

The first argument is input, making the algorithm choices in the options structure. Section 6 describes all possible
options and how to change each option. Table 3 tabulates the default values. The second argument is the input matrix
A stored in the SuperMatrix metadata structure. The third argument is an input/output structure storing all the
transformation vectors obtained from the preprocessing steps. The input right-hand sides are given by the {B, ldb,

nrhs} tuple. The grid structure defines the 3D process grid, including the MPI communicator for this grid. All the
precision-independent structures are defined in superlu_defs.h, and the precision-dependent structures are defined
in superlu_ddef.h (for double precision). The sparse LU factors and the triangular solve structures are output. In
addition the berr argument returns an array of componentwise relative backward error of each solution vector.

The sparse LU factorization progresses from leaf level l = log2 Pz to the root level 0. The two main phases are local
factorization and Ancestor-Reduction.

(1) Local factorization. In parallel and independently, every 2D process grid performs the 2D factorization of its
locally owned submatrix of A. This is the same algorithm as the one before Version-7 []. The only difference
is that each process grid will generate a partial Schur complement update, which will be summed up with the
partial updates from the other process grids in the next phase.

(2) Ancestor-Reduction. After the factorization of level-i , we reduce the partial Schur complement of the ancestor
nodes before factorizing the next level. In the i-th level’s reduction, the receiver is the k2l−i+1-th process grid and
the sender is the (2k + 1)2l−i -th process grid, for some integer k . The process in the 2D grid which owns a block
Ai, j has the same (x ,y) coordinate in both sender and receiver grids. So communication in the ancestor-reduction
step is point-to-point pair-wise and takes places along the z-axis in the 3D process grid.

We analyzed the asymptotic improvements for planar graphs (e.g., those arising from 2D grid or mesh discretizations)
and certain non-planar graphs (specifically for 3D grids and meshes). For a planar graph with n vertices, our algorithm
reduces communication volume asymptotically in n by a factor of O

(√
logn

)
and latency by a factor of O (logn). For

non-planar cases, our algorithm can reduce the per-process communication volume by 3× and latency by O
(
n

1
3
)
times.

In all cases, the extra memory needed to achieve these gains is a small constant factor of the L and U memory. We
implemented our algorithm by extending the 2D data structure used in SuperLU. Our new 3D code achieves empirical
speedups up to 27× for planar graphs and up to 3.3× for non-planar graphs over the baseline 2D SuperLU when run on
24,000 cores of a Cray XC30 (Edison at NERSC). Please see [11] for comprehensive performance tests with a variety of
real-world sparse matrices.

Remark. The algorithm structure requires that the z-dimension of the 3D process grid Pz must be a power-of-two
integer. There is no restriction on the shape of the 2D grid Px and Py . The rule of thumb is to define it as square as
possible. When square grid is not possible, it is better to set the row dimension Px slightly smaller than the column
dimension Py . For example, the following are good options for the 2D grid: 2x3, 2x4, 4x4, 4x8.

Inter-grid Load-balancing in the 3D SpLU Algorithm. The 3D algorithm provides two strategies for partitioning the
elimination tree to balance the load between different 2D grids. The SUPERLU_LBS environment variable specifies which
one to use.

• Nested Dissection (ND) strategy uses the partitioning provided by a nested dissection ordering. It works well
for regular grids. The ND strategy can only be used when the elimination tree is binary, i.e., when the column
order is also ND, and it cannot handle cases where the separator tree has nodes with more than two children.

6

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

SuperLU_DIST Release version-8 Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

• Greedy Heuristic (GD) strategy uses a greedy algorithm to divide one level of the elimination tree. It seeks to
minimize the maximum load imbalance among the children of that node; if the imbalance in children is higher
than 20%, it further subdivides the largest child until the imbalance falls below 20%. The GD strategy works well
for arbitrary column ordering and can handle irregular graphs; however, if it is used on heavily imbalanced trees,
it leads to bigger ancestor sizes and, therefore, more memory than ND. GD strategy is the default strategy unless
SUPERLU_LBS=ND is specified.

In summary, two parameters are specific to the 3D SpLU algorithm:

• superlu_rankorder (SUPERLU_RANKORDER) defines the arrangement of the 3D process grid (default is Z-major);
• superlu_lbs (SUPERLU_LBS) defines the inter-grid load-balancing strategy (default is GD).

3 OPENMP INTRA-NODE PARALLELISM

SuperLU can use shared-memory parallelism in two ways. First, is by using the multithreaded BLAS library for linear-
algebraic operations. This is independent of the implementation of SuperLU itself. Second, SuperLU can use OpenMP
pragmas for explicitly parallelizing some of the computations.

OpenMP is portable across a wide variety of CPU architectures and operating systems. OpenMP offers a shared-
memory programming model, which can be easier to use than a message-passing programming model. In this section,
we discuss the advantages and limitations of using OpenMP, and offer some performance considerations.

Advantage of OpenMPParallelism. We have empirically observed that hybrid programming with MPI+OpenMP often
requires less memory than pure MPI. This is because OpenMP does not require additional memory for message passing
buffers. In most cases, correctly tuned hybrid programming with MPI+OpenMP provides better performance than pure
MPI.

Limitations of OpenMPParallelism.

• The performance of OpenMP parallelism is often less predictable than pure MPI parallelism. This is due to
non-determinism in the threading layer, the CPU hardware, and thread affinities.
• OpenMP threadingmay cause a significant slowdown if parameters are chosen incorrectly. Performance slowdown
is often not entirely transparent. Slow-down can be due to false-sharing, NUMA effects, hyperthreading, incorrect
or suboptimal thread affinities, or underlying threading libraries.
• Performance variation can be observed between compilers and threading libraries.
• Performance can be difficult to model or predict. Performance tuning may require some trial and error. Perfor-
mance tuning is also dependent on the CPU architecture, the number of cores, and the underlying operating
system.

3.1 OpenMP Performance tuning

Performance tuning of OpenMP applications is critical to get the desired performance. In this section, we list some of
the most important environment variables that impact the performance of SuperLU and indicate how they should be
set to achieve maximum performance.

• OMP_NUM_THREADS: controls the number of OpenMP threads. To avoid resource over-subscription, the
product of MPI processes per node and OpenMP threads should be less than or equal to available physical cores.

7

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Xiaoye S. Li, Paul Lin, Yang Liu, and Piyush Sao

• OMP_PLACES: Defines where OpenMP threads may run. Possible values are cores, threads, or socket. A generally
good choice is "threads". You might want to test both "cores" and "threads" values on older processor models.
• OMP_PROC_BIND: The OMP_PROC_BIND directive determineswhether threadsmay bemoved between processors.
When set to TRUE, OpenMP threads should not be moved; when FALSE they may be moved. A good setting
of OMP_PROC_BIND is TRUE when OMP_PLACES is set and FALSE otherwise. You might want to test both
"close" and "spread" values on some older processor models.
• OMP_NESTED: The number of levels of OpenMP parallelism desired. Typically, setting it to FALSE gives the
best performance—in fact, setting it to TRUE may degrade performance due to over-subscription to threads.
• OMP_DYNAMIC: decides whether to dynamically change any of the numbers of thread/ threads groups for better
performance. Typically, FALSE gives the best performance. Setting it to TRUE can lead to degraded performance.

In Figure 4, we show the impact of different OpenMP variables and hybrid MPI-OpenMP configurations on Cori
Haswell nodes. Figure 4a shows the best performance achieved for different OpenMP and NUMA settings variables for
purely threaded configurations. Figure 4b shows the performance for different MPI×OpenMP threads on four Haswell
nodes of Cori. It should be noted that, hybrid configurations, i.e. configurations with more than one OpenMP threads
per MPI process, tends to require far less memory for MPI’s internal buffers[10]. In general, using 2-8 OpenMP threads
per MPI process gives good performance across a wide range of matrices.

(a) Best performance for OMP variables

NumaAlloc OMP_NUM_THREADS OMP_PLACES OMP_PROC_BIND OMP_DYNAMIC0

10

20

30

40

50

60

70

GF
LO

P/
se

c

In
te

rl
ea

ve

70.9

32
.0

70.9

co
re

s

70.9

fa
ls

e

70.9

fa
ls

e

70.9

D
ef

au
lt

67.9

64
.0

56.3

so
ck

et
s

64.6

sp
re

ad

70.7

tr
ue

66.9

th
re

ad
s

53.9

cl
os

e

53.9

(b) Performance w.r.t MPI× OMP threads

nd24k torso3
matrix

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Re
la

tiv
eT

im
e

1.0 1.0
0.9

1.0
0.9

1.2

0.9

1.3

1.0

1.6

1.3

2.1128 × 1
64 × 2
32 × 4

16 × 8
8 × 16
4 × 32

Fig. 4. OpenMP peformance tuning on Cori Haswell node.

The OpenMP API lets you control these variables programmatically. This becomes useful when the application and
SuperLU require different OpenMP configurations. For best performance, the user can use our autotuner GPTune to
tune these variables automatically, see Section 6.

4 GPU-ENABLED ROUTINES

In the current release, the SpLU factorization routines can offload certain computations to GPUs, which is mostly
in each Schur complement update (SCU) step. We support both NVIDIA and AMD GPUs. We are actively develop-
ing code for the Intel GPUs. To enable GPU offloading, first a compile-time CMake variable needs to be defined:
-DTPL_ENABLE_CUDALIB=TRUE (for NVIDIA GPU with CUDA programming) or -DTPL_ENABLE_HIPLIB=TRUE (for AMD
GPU with HIP programming). Then, a runtime environment variable SUPERLU_ACC_OFFLOAD is used to control whether
to use GPU or not. By default, SUPERLU_ACC_OFFLOAD=1 is set. (‘ACC’ denotes ACCelerator.)

8

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

SuperLU_DIST Release version-8 Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

4.1 2D SpLU GPU algorithm and tuning parameters

The first sparse LU factorization algorithm capable of offloading the matrix-matrix multiplication to the GPU was
published in [10]. The panel factorization and the Gather/Scatter operations are performed on the CPU. This algorithm
has been available since SuperLU_DIST version 4.0 of the code (October 2014); however, many users are uncertain
about using it correctly due to limited documentation. This paper provides a gentle introduction to GPU acceleration in
SuperLU_DIST and its performance tuning.

Performing SCU requires some temporary storage to hold dense blocks. In an earlier algorithm, at each elimination
step, the SCU is performed block by block. After performing updates on a block, the temporary storage can be reused for
the next block. A conspicuous advantage of this approach is its memory efficiency, since the temporary storage required
is bounded by maximum block size. The maximum block size is a tunable parameter that trades off local performance
of matrix-matrix multiplication (GEMM) with inter-process parallelism. A typical setting for the maximum block size is
512 (or smaller). However, a noticeable disadvantage of this approach is that it fails to fully utilize the abundance of
local fine-grained parallelism provided by GPUs because each GEMM is too small.

In [10], we modified the algorithm in the SCU step. At each step k , we first copy the individual blocks (in skyline
storage) in the kth block row of U into a consecutive buffer U(k, :). The L(:,k) is already in consecutive storage thanks
to the supernodal structure. We then perform a single GEMM call to compute V ← L(:,k) ×U (k, :). The matrix V is
preallocated and the size of V needs to be sufficiently large to achieve close to peak GEMM performance. If the size of
L(:,k) ×U (k, :) is larger than V , then we partition the product into several large chunks such that each chunk requires
temporary storage smaller than V . Given that modern GPUs have considerably more memory than earlier generations,
this extra memory can enable a much faster runtime.

Now, each step of SCU consists of the following substeps:

(1) Gather sparse blocks U (k, :) into a dense BLAS compliant buffer U(k, :);
(2) Call dense GEMM V ← L(:,k) × U(k, :) (leading part on CPU, trailing part on GPU); and
(3) Scatter V [] into the remaining (k+1 : N ,k+1 : N) sparse L andU blocks.

It should be noted that the Scatter operation can require indirect memory access, and therefore, it can be as expensive
as the GEMM cost. The Gather operation, however, has a relatively low overhead compared to other steps involved.
The GEMM offload algorithm tries to hide the overhead of Scatter and data transfer between the CPU and GPU via
software pipelining. Here, we discuss the key algorithmic aspects of the GEMM offload algorithm:

• To keep both the CPU and GPU busy, we divide the U(k, :) into a CPU part and GPU part, so that the GEMM
call is split into [cpu : gpu] parts: L(:,k) × U(k, [cpu]) and L(:,k) × U(k, [дpu]). To hide the data transfer cost,
the algorithm further divides the GEMM into multiple streams. Each stream performs its own sequence of
operations: CPU-to-GPU transfer, GEMM, and GPU-to-CPU transfer. Between these streams, these operations
are asynchronous. The GPU matrix multiplication is also pipelined with the Scatter operation performed on the
CPU.
• To offset the memory limitation on the GPU, we devised an algorithm to divide the SCU into smaller chunks as
{[cpu : дpu]1 | [cpu : дpu]2 | . . . }. These chunks depend on the available memory on the GPU and can be sized by
the user. A smaller chunk size will result in many iterations of the loop.

There are three environment variables that can be used to control the memory and performance in the GEMM offload
algorithm:

9

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Xiaoye S. Li, Paul Lin, Yang Liu, and Piyush Sao

• superlu_n_gemm (SUPERLU_N_GEMM) is the minimum value of the productmnk for a GEMM call to be worth
offloading to GPU (default is 5000);
• superlu_num_gpu_streams (SUPERLU_NUM_GPU_STREAMS) defines the number of GPU streams to use (default is
8); and
• superlu_max_buffer_size (SUPERLU_MAX_BUFFER_SIZE) defines the maximum buffer size on GPU that can
hold the GEMM output matrix V (default is 256M in floating-point words).

This simple GEMM offload algorithm has limited performance gains. We observed a roughly 2-3× speedup over the
CPU-only code for a range of sparse matrices.

4.2 3D SpLU GPU algorithm and tuning parameters

We extend the 3D algorithm for heterogeneous architectures by adding the Highly Asynchronous Lazy Offload (Halo)
algorithm for co-processor offload [9]. Compared to the GPU algorithm in the 2D code (Section 4.1), this algorithm also
offloads the Scatter operations of each SCU step to the GPU (in addition to the GEMM call).

On 4096 nodes of a Cray XK7 (Titan at ORNL) with 32,768 CPU cores and 4096 Nvidia K20x GPUs, the 3D algorithm
achieves empirical speedups up to 24× for planar graphs and 3.5× for non-planar graphs over the baseline 2D SuperLU

with co-processor acceleration.
The performance related parameters are:

• superlu_num_lookaheads (SUPERLU_NUM_LOOKAHEADS), number of lookahead levels in the Schur-complement
update (default is 10)
In order to reduce the critical path of the sequence of panel factorizations, we devised a software pipelining
method to overlap the panel factorization of the processes at step k + 1 with the Schur-complement update of
the other processes at step k . When there are multiple remaining supernodes in the Schur complement, the
lookahead window (i.e. pipeline depth) can be greater than 1 [12]. This environment variable defines the width
of the lookahead window.
• superlu_mpi_process_per_gpu (MPI_PROCESS_PER_GPU) (default is 1).
TheHalo algorithm uses GPUmemory based on its availability. To do this correctly, the SuperLUHalo algorithm
needs to know how many MPI processes are running on a GPU, which can be difficult to determine on some
systems. This environment variable can be set to inform SuperLU that there are N ranks on each GPU so that it
can limit its memory usage of each GPU to 90% of available memory shared among all MPI processes, which will,
in turn, limit the amount of memory used by each rank.

4.3 2D SpTRSV GPU algorithm

When the 2D grid has one MPI rank, SpTRSV in SuperLU is parallelized using OpenMP for shared-memory processors
and CUDA or HIP for GPU. Both versions of the implementations are based on an asynchronous level-set traversal
algorithm that distributes the computation workload across CPU threads and GPU threads/blocks [4]. The CPU
implementation uses OpenMP taskloops and tasks for dynamic scheduling, while the GPU implementation relies on
static scheduling. Fig. 5a shows the performance of SpTRSV (L and U solves) on 1 Cori Haswell node with 1 and 32
OpenMP threads with a number of matrices.

Fig. 5b shows the performance of L-solve using SuperLU (8 ORNL Summit IBM POWER9 CPU cores or 1 Summit
V100 GPU) and cuSPARSE (1 Summit V100 GPU). The GPU SpTRSV in SuperLU consistently outperforms cuSPARSE

10

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

SuperLU_DIST Release version-8 Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

(a) L and U solve (in seconds) with 1 and 32 OpenMP threads
on Cori Haswell

m
at

ri
x
0
5

A
3
0

co
p
te

r2

g
as

_
se

n
so

r

m
at

ri
x
-n

ew
_
3

x
en

o
n
2

sh
ip

se
c1

x
en

o
n
1

g
7
ja

c1
6
0

g
7
ja

c1
4
0
sc

m
ar

k
3
ja

c1
0
0
sc

ct
2
0
st

if

v
an

b
o
d
y

n
cv

x
b
q
p
1

d
aw

so
n
5

2
D

_
5
4
0
1
9
_
h
ig

h
K

g
ri

d
g
en

a

ep
b
3

to
rs

o
2

to
rs

io
n
1

b
o
y
d
1

h
v
d
c2

ra
ja

t1
6

h
ci

rc
u
it

10
-2

10
-1

T
im

e

1 OpenMP threads 32 OpenMP threads

(b) L solve of SuperLU and cuSparse on CPU and GPU

gl
ob

al
m

at
11

8_
15

36

m
at

rix
05

co
pt

er
2

ep
b3

gr
id

ge
na

va
nb

od
y

sh
ip

se
c1

da
w

so
n5

ga
s_

se
ns

or

ra
ja

t1
6

0

0.5

1

1.5

2

2.5
CUSPARSE

GPU SuperLU

CPU(8-core) SuperLU

Fig. 5. Performance of SpTRSV with 1 MPI rank for a variety of sparse matrices.

and is comparable to the 8-core CPU results. Here we choose 8 CPU cores as there are on average 7 CPU cores per
GPU on Summit, and 8 is the closest power of 2 number. Note that GPU performance of the U-solve requires major
improvements and is not available in the current release. That said, we compare the performance of SpTRSV (both L
and U solves) on one Summit node using three configurations: 1. (baseline) 1-core L solve and 1-core U solve, 2. (GPU)
1-GPU L solve and 1-core U solve, and 3. (GPU+OpenMP) 1-GPU L solve and 8-core U solve. The speedups comparing
to the baseline configuration are shown in Table 1.

When the 2D grid has more than 1 MPI rank, SpTRSV also supports OpenMP parallelism with less speedups. In
addition, the multi-GPU SpTRSV in SuperLU is under active development and will be available in future releases.

The number of OpenMP threads can be controlled by the environment variable OMP_NUM_THREADS, and the
GPU SpTRSV can be turned on with the -DGPU_SOLVE compiler flag. The user needs to make sure that only 1 MPI rank

is used for the 2D grid when GPU SpTRSV is employed.

copter2 epb3 gridgena vanbody shipsec1 dawson5
GPU vs. Baseline 1.6 1.7 1.6 1.6 1.54 1.6

GPU+OpenMP vs. Baseline 5.3 5.7 5.3 4.4 4.1 5.2
Table 1. Speedup of GPU SpTRSV compared with sequential CPU SpTRSV.

5 MIXED-PRECISION ROUTINES

SuperLU has long supported four distinct floating-point types: IEEE FP32 real and complex, IEEE FP64 real and complex.
Furthermore, the library allows all four datatypes to be used together in the same application. This is often not supported
by other libraries.

Recent hardware trends have motivated increased development ofmixed-precision numerical libraries, mainly because
hardware vendors have started designing special-purpose units for low precision arithmetic with higher performance.
For direct linear solvers, a well understood method is to use lower precision to perform factorization (expensive) and

11

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Xiaoye S. Li, Paul Lin, Yang Liu, and Piyush Sao

(a) Time breakdown of various steps of FP32 SpLU, “Other”
mostly consists of MPI communication

(b) Comparison of SpLU time between the FP32 and FP64
versions

Fig. 6. Times of FP32 and FP64 SpLU for 5 matrices. All are measured on 10 nodes of ORNL Summit with 6 MPI ranks and 6 GPUs
per node.

higher precision to perform iterative refinement (IR) to recover accuracy (cheap). For a typical sparse matrix resulting
from the 3D finite difference discretization of a regular mesh, the SpLU needs O

(
n2) flops while each IR step needs

only O
(
n4/3

)
flops (including sparse matrix-vector multiplication (SpMV) and SpTRSV).

For dense LU and QR factorizations, the benefit of lower precision format comes mainly from accelerated GEMM
speed. But in the sparse case, the dimensions of the GEMM are generally smaller and of non-uniform size throughout
factorization. Therefore, the speed gain from GEMM alone is limited. In addition to GEMM, a nontrivial cost is the
Scatter operation. In Figure 6 we tally the time of various steps in SpLU and the time comparison of using FP32 vs. FP64.
These are measured times for five real matrices of dimension on the order of 1 million. As can be seen, depending on
the matrix sparsity structure, the fraction of time in GEMM varies, and usually is less than 50% (left plot). Because of
this, the Tensor Core version of GEMM calls led to a less than 5% speedup for the whole SpLU. When comparing FP32
with the FP64 versions, we observed about 50% speedup with the FP32 version (right plot).

The simplest mixed precision sparse direct solver is to use lower precision for the expensive LU and QR factorizations,
and higher precision in the cheap residual and solution update in IR. We recall the IR algorithm using three precisions
in Algorithm 1 [2, 3]. This algorithm is already available as xGERFSX functions in LAPACK, where the input matrix is
dense and so is LU. Potentially, the following three precisions may be used:

• εw is the working precision; it is used for the input data A and b, and output x .
• εx is the precision for the computed solution x (i). We require εx ≤ εw , possibly εx ≤ ε2

w if necessary for
componentwise convergence.
• εr is the precision for the residuals r (i). We usually have εr ≤ ε2

w , i.e., at least twice the working precision.

Algorithm 1 converges with small normwise (or componentwise) error and error bound if the normwise (or compo-
nentwise) condition number of A does not exceed 1/(γεw), where γ

def
=
√
maxi (nnz(A(i, :)). Moreover, this IR procedure

can return to the user both normwise and componentwise reliable error bounds. The error analysis in [2] should carry
through to the sparse cases.

We implemented Algorithm 1 in SuperLU, using two precisions in IR:
12

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

SuperLU_DIST Release version-8 Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

Algorithm 1 Three-precisions Iterative Refinement (IR) for Direct Linear Solvers

1: Solve Ax (1) = b using the basic solution method (e.g., LU or QR) ▷ (εw)
2: i = 1
3: repeat
4: r (i) ← b −Ax (i) ▷ (εr)
5: Solve Adx (i+1) = r (i) using the basic solution method ▷ (εw)
6: Update x (i+1) ← x (i) + dx (i+1) ▷ (εx)
7: i ← i + 1
8: until x (i) is “accurate enough”
9: return x (i) and error bounds

(a) audikw_1 convergence history (b) Ga19As19H2 convergence history

Fig. 7. Convergence history of Algorithm 1 when applied to two sparse linear systems. The vertical line in each plot corresponds to
the IR steps taken when our stopping criteria are satisfied.

• εw = 2−24 (IEEE-754 single precision), εx = εr = 2−53 (IEEE-754 double precision)

In Figure 7, the left two plots show the convergence history of two systems, in both normwise foward and backward
errors, Ferr and Berr , respectively (defined below). We perform two experiments: one using single precision IR, the
other using double precision IR. As can be seen, single precision IR does not reduce much Ferr , while double precision
IR delivers Ferr close to εw . The IR time is usually under 10% of the factorization time. Overall, the mixed-precision
speed is still faster than using pure FP64, see Table 2.

Table 2. Parallel solution time (seconds) (including SpLU and IR): purely double precision, purely single precision, and mixed precision
(FP32 SpLU + FP64 IR). ORNL Summit using up to 8 nodes, each node uses 6 CPU Cores (C) and 6 GPUs (G).

Matrix Precision 6 C+G 24 C+G 48 C+G Matrix Precision 6 C+G 24 C+G 48 C+G
audikw_1 Double 65.9 21.1 18.9 Ga19As19H42 Double 310.9 62.4 34.3

Single 45.8 13.8 10.5 Single 258.1 48.2 25.8
Mixed 49.2 13.9 11.4 Mixed 262.8 48.8 26.1

The 2D driver routine for this mixed-precision approach is psgssvx_d2, where the suffix "d2" denotes that the
intermediate x vector and r vector internal to the IR routine are carried in double precision. The API of this routine is
as follows. To use double precision IR, we need to set: options->IterRefine = SLU_DOUBLE.

13

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Xiaoye S. Li, Paul Lin, Yang Liu, and Piyush Sao

void psgssvx_d2(superlu_dist_options_t *options, SuperMatrix *A,

sScalePermstruct_t *ScalePermstruct,

float B[], int ldb, int nrhs, gridinfo_t *grid,

sLUstruct_t *LUstruct, sSOLVEstruct_t *SOLVEstruct,

float *err_bounds, SuperLUStat_t *stat, int *info)

The only difference from the one-precision routine psgssvx is the output array err_bounds[]. For each right-hand
side, we return the following three quantities:

• err_bounds[0]: normwise forward error bound: Bnorm = max
(
∥dx (i+1) ∥∞/∥x (i) ∥∞

1−ρmax
,γεw

)
≈
∥x (i)−x ∥∞
∥x ∥∞

where, ρmax
def
= maxj≤i ∥dx

(j+1) ∥∞
∥dx (j) ∥∞

is the estimate of the convergence rate of x (i).

• err_bounds[1]: componentwise forward error bound: max
(
∥C−1dx (i) ∥∞

1−ρ̂max
,γεw

)
≈ maxk

���� x (i)k −xkxk

����
where, C = diaд(x), ρ̂max = maxj≤i ∥Cdx

(j+1) ∥∞
∥Cdx (j) ∥∞

is the estimate of the convergence rate of C−1x (i)

• err_bounds[2]: componentwise backward error: maxk
(
|b−Ax (i) |k

(|A | |x (i) |+ |b |)k

)
The detailed error analysis can be found in [2].

6 SUMMARY OF PARAMETERS, ENVIRONMENT VARIABLES AND PERFORMANCE IMPACT

Throughout all phases of the solution process, a number of algorithm parameters can influence the solver’s performance.
These parameters can be modified by the user. For each user-callable routine, the first argument is usually an input
"options" argument, which points to the structure containing a number of algorithm choices. These choices are
determined at compile time. The second column in Table 3 lists the named fields in the options argument. The fourth
column lists all the possible values and their corresponding C’s enumerated constant names. The user should call the
following routine to set up the default values.

superlu_dist_options_t options;

set_default_options_dist(&options);

After setting the defaults, the user can modify each default, for example:

options.RowPerm = LargeDiag_HWPM;

For a subset of these parameters, the user can change them at runtime via environment variables. These parameters
are listed in the third column in Table 3. At various places of the code, an environment inquiry function SRC/sp_ienv.c
is called to retrieve the values of the environment variables.

Two algorithm blocking parameters can be changed at runtime: SUPERLU_MAXSUP and SUPERLU_RELAX. SUPERLU_MAXSUP
sets the maximum size of a supernode. That is, if the number of columns in a supernode exceeds this value, we will
split this supernode into two supernodes. Setting this parameter to a large value results in larger blocks and generally
better performance for threaded and GPU GEMM. Increasing it limits the number of available parallel tasks across MPI
processes. Figure 8a illustrates how performance, as measured in Gflops, varies with SUPERLU_MAXSUP on a single node
of Cori Haswell when using 32 OpenMP threads. For smaller matrices, such as this one (torso3), performance is near its
peak when SUPERLU_MAXSUP equals 128, which is over 50× faster than when this value is set to 4. However, above this
value, the performance starts to taper off.

14

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

SuperLU_DIST Release version-8 Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

(a)

2 4 8 16 32 64 128 256 512
Max Supernode Size

2 1

20

21

22

23

24

25

26

Pe
rfo

rm
an

ce
 in

 G
FL

OP
/s

ec

torso3-OMP_NUM_THREADS=32,Intel-Haswell

(b)

4 8 16 32 64 128 256
SUPERLU_RELAX

0

20

40

60

80

100

120

%
 M

em
or

y
re

la
tiv

e
to

 S
UP

ER
LU

_R
EL

AX
=4

100 100 102 104
108

115

130Mem(L + U) Mem(IDX)

7

8

9

10

11

12

 Fa
ct

or
iza

tio
n

tim
e

in
 se

co
nd

s

Factorization Time

Fig. 8. Impact of maximum supernode size (SUPERLU_MAXSUP) and supernodal relaxation (SUPERLU_RELAX) on performance and
memory. The machine is NERSC Cori Haswell node. The matrix is torso3 from SuiteSparse.

SUPERLU_RELAX is a relaxation parameter: if the number of nodes (columns) in a subtree of the elimination tree is
less than this value, this subtree is treated as one supernode, regardless of the row structures. That means, we pad
explicit zeros to enforce that all the columns within this relaxed supernode have the same row structure. The advantage
of this padding is to mitigate many small supernodes at the bottom of the elimination tree. On the other hand, a large
value of SUPERLU_RELAX may introduce too many zeros which in turn propagate to the ancestors of the elimination
tree, resulting in a large number of fill-ins in the L and U factors. Figure 8b shows the impact of this parameter on the
memory use (left axis) and factorization time. A value of 32 or 64 represents a good tradeoff between memory and time.

The optimal settings of these parameters are matrix-dependent and hardware-dependent. Additionally, several other
parameters and environment variables listed in Table 3 are performance critical for the 2D and 3D, CPU and GPU
algorithms described in Sections 2, 4.1 and 4.2. It is a daunting task for manual tuning to find the optimal setting of
these parameters. Now in Sections 6.1 - 6.3 we show how an autotuner can significantly simplify this task. Here we
leverage an autotuner called GPTune [8] to tune the performance (time and memory) of SpLU. We consider two example
matrices from the Suitesparse matrix collection, G3_circuit from circuit simulation and H2O from quantum chemistry
simulation. For all the experiments, we consider a two-objective tuning scenario and generate a Pareto front from the
samples demonstrating the tradeoff between memory and CPU requirement of SpLU.

6.1 3D CPU SpLU parameter tuning

For the 3D CPU SpLU algorithm (2), we use 16 NERSC Cori Haswell nodes and the G3_circuit matrix. The number
of OpenMP threads is set to 1, so there are a total of PxPyPz = 512 MPI ranks. We consider the following tuning
parameters [SUPERLU_MAXSUP, SUPERLU_RELAX, num_lookaheads, Px , Pz]. We set up GPTune to generate 100 samples.
All samples and the Pareto front are plotted in Fig. 9a. The samples on the Pareto front and the default one are shown
in Table 4, one can clearly see that by reducing the computation granularity (SUPERLU_MAXSUP, SUPERLU_RELAX) and
increasing Pz , one can significantly improve the SpLU time while using slightly more memory.

6.2 2D GPU SpLU parameter tuning

For the 2D GPU SpLU algorithm (4.1), we use 2 NERSC Perlmutter GPU compute nodes with 4 MPI ranks per node and
the H2O matrix. Perlmutter GPU compute nodes consist of a single 64-core 2.45 GHz AMD EPYC 7763 CPU and four

15

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Xiaoye S. Li, Paul Lin, Yang Liu, and Piyush Sao

Table 3. List of algorithm parameters used in various phases of the linear solver. The third column lists the environment variables
that can be reset at runtime. parameters must be set in the options{} structure input to a driver routine.

phase options env variables values in 2D or 3D algo.
(compile-time) (runtime) (enum constants)

Pre- Equil NO, YES (default) 2d, 3d
process RowPerm 0: NOROWPERM 2d, 3d

1: LargeDiag_MC64 (default) 2d, 3d
2: LargeDiag_HWPM 2d, 3d
3: MY_PERMR 2d, 3d

ColPerm 0: NATURAL 2d, 3d
1: MMD_ATA 2d, 3d
2: MMD_AT_PLUS_A 2d, 3d
3: COLAMD 2d, 3d
4: METIS_AT_PLUS_A (default) 2d, 3d
5: PARMETIS 2d, 3d
6: ZOLTAN 2d, 3d
7: MY_PERMC 2d, 3d

ParSymbFact YES, NO (default) 2d, 3d
SpLU ReplaceTinyPivot YES, NO (default) 2d, 3d

Algo3d YES, NO (default) 3d
DiagInv YES, NO (default) 2d
num_lookaheads SUPERLU_NUM_LOOKAHEADS default 10 2d, 3d (Section 4.2)
superlu_maxsup SUPERLU_MAXSUP default 256 2d, 3d (Section 6)
superlu_relax SUPERLU_RELAX default 60 2d, 3d
superlu_rankorder SUPERLU_RANKORDER default Z-major 3d (Section 2.1)
superlu_lbs SUPERLU_LBS default GD 3d (Section 2.1)
superlu_acc_offload SUPERLU_ACC_OFFLOAD 0, 1 (default) 2d, 3d (Section 4)
superlu_n_gemm SUPERLU_N_GEMM default 5000 2d (Section 4.1)
superlu_max_buffer_size SUPERLU_MAX_BUFFER_SIZE default 250M words 2d, 3d (Section 4.1)
superlu_num_gpu_streams SUPERLU_NUM_GPU_STREAMS default 8 2d (Section 4.1)
superlu_mpi_process_per_gpu SUPERLU_MPI_PROCESS_PER_GPU default 1 3d (Section 4.2)

OMP_NUM_THREADS default system dependent 2d, 3d (Section 3)
OMP_PLACES undefined 2d, 3d
OMP_PROC_BIND undefined 2d, 3d
OMP_NESTED undefined 2d, 3d
OMP_DYNAMIC undefined 2d, 3d

SpTRSV IterRefine 0: NOREFINE (default) 2d, 3d
(Section 5) 1: SLU_SINGLE

2: SLU_DOUBLE
Others PrintStat NO, YES (default) 2d, 3d

NVIDIA A100 (40GB HBM2) GPUs. The number of OpenMP threads is set to 16. We consider the following tuning
parameters [ColPerm, SUPERLU_MAXSUP, SUPERLU_RELAX, SUPERLU_N_GEMM , SUPERLU_MAX_BUFFER_SIZE, Px]. We set
up GPTune to generate 100 samples. All samples and the Pareto front are plotted in Fig. 9b. The samples on the Pareto
front and the default one are shown in Table 5. Compared to the default configuration, both the time and memory can
be significantly improved by increasing the computation granularity (larger SUPERLU_MAXSUP, SUPERLU_RELAX). Also,
less GPU offload (larger SUPERLU_N_GEMM) leads to better performance.

16

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

SuperLU_DIST Release version-8 Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

(a) 3D CPU SpLU

10
0

10
1

10
2

10
3

2500

3000

3500

4000
All samples

Pareto optima

Default

(b) 2D GPU SpLU

15 20 40 80

1

1.5

2
10

4

All samples

Pareto optima

Default

(c) 3D GPU SpLU

10 20 40

4000

6000

8000

10000

12000

All samples

Pareto optima

Default

Fig. 9. Samples generated by GPTune for the three tuning experiments. Only valid samples are plotted.

6.3 3D GPU SpLU parameter tuning

For the 3D GPU SpLU algorithm in Section 4.2, we use 2 NERSC Perlmutter GPU nodes with 4 MPI ranks per node
and the H2O matrix. The number of OpenMP threads is set to 16, and PxPyPz = 8. We consider the following tuning
parameters [ColPerm, SUPERLU_MAXSUP, SUPERLU_RELAX SUPERLU_MAX_BUFFER_SIZE, Px , Pz]. We set up GPTune to
generate 200 samples. All samples and the Pareto front are plotted in Fig. 9c. The samples on the Pareto front and the
default one are shown in Table 6. Compared to the default configuration, both the time and memory utilization can
be significantly improved by increasing the computation granularity and decreasing GPU buffer sizes. ColPerm=‘4’
(METIS_AT_PLUS_A) is always preferable in terms of memory usage. The effects of Px and Pz are insignificant as only
8 MPI ranks are used.

SUPERLU_MAXSUP SUPERLU_RELAX num_lookaheads Px Pz Time (s) Memory (MB)
Default 256 60 10 16 1 5.6 2290
Tuned 31 25 17 16 1 21.9 2253
Tuned 53 35 7 4 4 1.64 2360

Table 4. Default and optimal samples returned by GPTune for the 3D CPU SpLU algorithm. Note that Py is derived by Py =
512/(Px Pz), as the total MPI count is fixed at 512.

ColPerm SUPERLU_MAXSUP SUPERLU_RELAX SUPERLU_N_GEMM SUPERLU_MAX_BUFFER_SIZE Px Time Memory
(s) (MB)

Default ‘4’ 256 60 1000 2.5E8 4 20.8 6393
Tuned ‘4’ 154 154 2048 2.68E8 2 13.5 6011
Tuned ‘4’ 345 198 262144 6.7E7 2 13.2 6813
Tuned ‘4’ 124 110 8192 1.3E8 2 14.6 5976
Table 5. Default and optimal samples returned by GPTune for the 2D GPU SpLU algorithm. Note that Py is derived by Py = 8/Px ,
as the total MPI count is fixed at 8.

7 FORTRAN 90 INTERFACE

In the FORTRAN/ directory, there are Fortran 90 module files that implement the wrappers for Fortran programs to
access the full functionality of the C functions in SuperLU. The design is based on object-oriented programming concept:

17

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Xiaoye S. Li, Paul Lin, Yang Liu, and Piyush Sao

ColPerm SUPERLU_MAXSUP SUPERLU_RELAX SUPERLU_MAX_BUFFER_SIZE Px Pz Time (s) Memory (MB)
Default ‘4’ 256 60 2.5E8 4 1 25.3 3520
Tuned ‘4’ 176 143 1.34E8 2 1 12.1 3360
Tuned ‘4’ 327 182 1.34E8 4 2 7.4 3752
Tuned ‘4’ 610 200 3.34E7 8 1 12.5 3280
Tuned ‘4’ 404 187 3.34E7 1 2 8.76 3744
Tuned ‘4’ 232 199 3.34E7 4 2 6.7 3936

Table 6. Default and optimal samples returned by GPTune for the 3D GPU SpLU algorithm. Note that Pz is calculated from Px and
Py as the total MPI count is fixed.

define opaque objects in the C space, which are accessed via handles from the Fortran space. All SuperLU objects (e.g.,
process grid, LU structure) are opaque from the Fortran side. They are allocated, deallocated and operated at the C side.
For each C object, we define a Fortran handle in Fortran’s user space, which points to the C object and implements
the access methods to manipulate the object. All handles are 64-bit integer type. For example, consider creating a 3D
process grid. The following code snippet shows what are involved from the Fortran and C sides.

• Fortran side

/* Declare handle: */

integer(64)::f_grid3d

/* Call C wrapper routine to create 3D grid pointed to by "f_grid3d": */

call f_superlu_gridinit3d(MPI_COMM_WORLD, nprow, npcol, npdep, f_grid3d)

• C side

/* Fortran-to-C interface routine: */

void f_superlu_gridinit3d(int *MPIcomm, int *nprow, int *npcol,int *npdep, int64_t *f_grid3d)

{

/* Actual call to C routine to create grid3d structture in *grid3d{} */

superlu_gridinit3d(f2c_comm(MPIcomm),*nprow, *npcol, *npdep, (gridinfo3d_t *) *f_grid3d);

}

Here, the Fortran handle f_grid3d essentially acts as a 64-bit pointer pointing to the internal 3D grid structure,
which is created by the C routine superlu_gridinit3d(). This structure (see Fig. 2) sits in the C space and is invisible
from the Fortran side.

For all the user-callable C functions, we provide the corresponding Fortran-to-C interface functions, so that the Fortran
program can access all the C functionality. These interface routines are implemented in the files superlu_c2f_wrap.c
(precision-independent) and superlu_c2f_dwrap.c (double precision). The Fortran-to-C name mangling is handled by
CMake through the header file SRC/superlu_FCnames.h. The module file superlupara.f90 defines all the constants
matching the enum constants defined in the C side (see Table 3). The module file superlu_mod.f90 implements all the
access methods (set/get) for the Fortran side to access the objects created in the C user space.

18

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

SuperLU_DIST Release version-8 Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

8 INSTALLATIONWITH CMAKE OR SPACK

8.1 Dependent external libraries

One can have a bare minimum installation of SuperLU without any external dependencies, although the following
external libraries are useful for high performance: BLAS, (Par)METIS (sparsity-preserving ordering), CombBLAS (parallel
numerical pivoting) and LAPACK (for inversion of dense diagonal block).

8.2 CMake installation

You will need to create a build tree from which to invoke CMake. The following describes how to define the external
libraries.

BLAS (highly recommended)
If you have a fast BLAS library on your machine, you can link it using the following CMake definition:

-DTPL_BLAS_LIBRARIES="<BLAS library name>"

Otherwise, the CBLAS/ subdirectory contains the part of the C BLAS (single threaded) needed by SuperLU, but
it is not optimized for performance. You can compile and use this internal BLAS with the following CMake
definition:

-DTPL_ENABLE_INTERNAL_BLASLIB=ON

ParMETIS (highly recommended)
http://glaros.dtc.umn.edu/gkhome/fetch/sw/parmetis/parmetis-4.0.3.tar.gz
You can install ParMETIS and define the two environment variables as follows:

export PARMETIS_ROOT=<Prefix directory of the ParMETIS installation>

export PARMETIS_BUILD_DIR=${PARMETIS_ROOT}/build/Linux-x86_64

Note that by default, we use serial METIS as the sparsity-preserving ordering, which is available in the ParMETIS
package. You can disable ParMETIS during installationwith the following CMake definition: -DTPL_ENABLE_PARMETISLIB=OFF.
In this case, the default ordering is set to be MMD_AT_PLUS_A.
See Table 3 for all the possible ColPerm options.
In order to use parallel symbolic factorization function, you need to use ParMETIS ordering.

LAPACK (highly recommended)
In the triangular solve routine, we may use LAPACK to explicitly invert the dense diagonal block to improve the
performance. You can use it with the following CMake option:

-DTPL_ENABLE_LAPACKLIB=ON

CombBLAS (optional)
https://people.eecs.berkeley.edu/~aydin/CombBLAS/html/index.html
In order to use parallel weighted matching HWPM (Heavy Weight Perfect Matching) for numerical pre-
pivoting [1], you need to install CombBLAS and define the environment variables:

export COMBBLAS_ROOT=<Prefix directory of the CombBLAS installation>

export COMBBLAS_BUILD_DIR=${COMBBLAS_ROOT}/_build

Then, install with the CMake option:

-DTPL_ENABLE_COMBBLASLIB=ON

19

http://glaros.dtc.umn.edu/gkhome/fetch/sw/parmetis/parmetis-4.0.3.tar.gz
https://people.eecs.berkeley.edu/~aydin/CombBLAS/html/index.html

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Xiaoye S. Li, Paul Lin, Yang Liu, and Piyush Sao

Use GPU
You can enable (NVIDIA) GPU with CUDA with the following CMake option:

-DTPL_ENABLE_CUDALIB=TRUE

You can enable (AMD) GPU with HIP with the following CMake option:

-DTPL_ENABLE_HIPLIB=TRUE

For a simple installation with default settings:

mkdir build ; cd build;

cmake .. \

-DTPL_PARMETIS_INCLUDE_DIRS="${PARMETIS_ROOT}/include;\

${PARMETIS_ROOT}/metis/include" \

-DTPL_PARMETIS_LIBRARIES="${PARMETIS_BUILD_DIR}/libparmetis/libparmetis.a;\

${PARMETIS_BUILD_DIR}/libmetis/libmetis.a" \

There are a number of example build scripts in the example_script/ directory, with filenames run_cmake_build_*.sh
that target various machines.

To actually build (compile), type: ‘make’.
To install the libraries, type: ‘make install’.
To run the installation tests, type: ‘test’. (The outputs are in file: ‘build/Testing/Temporary/LastTest.log’) or, ‘ctest -D

Experimental’, or, ‘ctest -D Nightly’.
Note that the parallel execution in ctest is invoked by the "mpiexec" command, which is from the MPICH envi-

ronment. If your MPI is not MPICH/mpiexec based, the test execution may fail. You can pass the definition option
-DMPIEXEC_EXECUTABLE to CMake. For example onCori at NERSC, youwill need the following: cmake .. -DMPIEXEC_EXECUTABLE=/usr/bin/srun.

Or, you can always go to TEST/ directory to perform testing manually.
The following list summarizes the commonly used CMake definitions. In each case, the first choice is the default

setting. After running a ‘cmake’ installation, a configuration header file is generated in SRC/superlu_dist_config.h,
which contains the key CPP definitions used throughout the code.

-DTPL_ENABLE_INTERNAL_BLASLIB=OFF | ON

-DTPL_ENABLE_PARMETISLIB=ON | OFF

-DTPL_ENABLE_LAPACKLIB=OFF | ON

-DTPL_ENABLE_COMBBLASLIB=OFF | ON

-DTPL_ENABLE_CUDALIB=OFF | ON

-DCMAKE_CUDA_FLAGS=<...>

-DTPL_ENABLE_HIPLIB=OFF | ON

-DHIP_HIPCC_FLAGS=<...>

-Denable_complex16=OFF | ON (double-complex datatype)

-Denable_single=OFF | ON (single precision real datatype)

-DXSDK_INDEX_SIZE=32 | 64 (integer size for indexing)

-DBUILD_SHARED_LIBS= OFF | ON

-DCMAKE_INSTALL_PREFIX=<...>

-DCMAKE_C_COMPILER=<MPI C compiler>

20

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

SuperLU_DIST Release version-8 Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

-DCMAKE_C_FLAGS=<...>

-DCMAKE_CXX_COMPILER=<MPI C++ compiler>

-DCMAKE_CXX_FLAGS=<...>

-DXSDK_ENABLE_Fortran=OFF | ON

-DCMAKE_Fortran_COMPILER=<MPI F90 compiler>

8.3 Spack installation

Spack installation of SuperLU_DIST is a fully automated process. Assume that the develop branch of Spack (https://github.com/spack/spack)
is used. You can find available compilers via: spack compilers. In the following, let’s assume the available compiler is
gcc@9.1.0. The installation supports the following variants:

Use 64-bit integer
You can enable 64-bit integer with:

spack install superlu-dist@master+int64%gcc@9.1.0

Use GPU
You can enable (NVIDIA or AMD) GPUs with:

spack install superlu-dist@master+cuda%gcc@9.1.0

spack install superlu-dist@master+rocm%gcc@9.1.0

Test installation
You can run a few smoke tests of the spack installation via

spack test run superlu-dist@master (pick the appropriate installation if multiple variants available)

ACKNOWLEDGMENTS

We are grateful to Barry Smith for building the PETSc interface for the new 3D code, for the suggestions to improve the
interface of how the parameters should be exposed to the users, and for the detailed feedback of the initial manuscript.

This research was supported in part by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of the
U.S. Department of Energy Office of Science and the National Nuclear Security Administration, and in part by the
Scientific Discovery through Advanced Computing (SciDAC) Program under the Office of Science at the U.S. Department
of Energy.

REFERENCES
[1] A. Azad, A. Buluc, X.S. Li, X. Wang, and J. Langguth. 2020. A Distributed-Memory Algorithm for Computing a Heavy-Weight Perfect Matching on

Bipartite Graphs. SIAM J. Scientific Computing 42, 4 (2020), C143–C168.
[2] J. Demmel, Y. Hida, W. Kahan, X.S. Li, S. Mukherjee, and E.J. Riedy. 2006. Error Bounds from Extra-Precise Iterative Refinement. ACM Trans. Math.

Softw. 32, 2 (June 2006), 325–351.
[3] J. Demmel, Y. Hida, E.J. Riedy, and X.S. Li. 2009. Extra-precise iterative refinement for overdetermined least squares problems. ACM Transactions on

Mathematical Software (TOMS) 35, 4 (2009), 28.
[4] Nan Ding, Yang Liu, Samuel Williams, and Xiaoye S. Li. [n. d.]. A Message-Driven, Multi-GPU Parallel Sparse Triangular Solver. 147–159.

https://doi.org/10.1137/1.9781611976830.14 arXiv:https://epubs.siam.org/doi/pdf/10.1137/1.9781611976830.14
[5] X.S. Li, J.W. Demmel, J.R. Gilbert, L. Grigori, P. Sao, M. Shao, and I. Yamazaki. 1999. SuperLU Users’ Guide. Technical Report LBNL-44289. Lawrence

Berkeley National Laboratory. https://portal.nersc.gov/project/sparse/superlu/ug.pdf, Last update: June 2018.
[6] X. S. Li and J. W. Demmel. 1998. Making Sparse Gaussian Elimination Scalable by Static Pivoting. In Proceedings of SC98: High Performance Networking

and Computing Conference. Orlando, Florida.

21

https://doi.org/10.1137/1.9781611976830.14
https://arxiv.org/abs/https://epubs.siam.org/doi/pdf/10.1137/1.9781611976830.14
https://portal.nersc.gov/project/sparse/superlu/ug.pdf

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Xiaoye S. Li, Paul Lin, Yang Liu, and Piyush Sao

[7] X. S. Li and J. W. Demmel. 2003. SuperLU_DIST: A Scalable Distributed-Memory Sparse Direct Solver for Unsymmetric Linear Systems. ACM Trans.
Mathematical Software 29, 2 (June 2003), 110–140.

[8] Yang Liu, Wissam M. Sid-Lakhdar, Osni Marques, Xinran Zhu, Chang Meng, James W. Demmel, and Xiaoye S. Li. 2021. GPTune: Multitask Learning
for Autotuning Exascale Applications. In Proceedings of the 26th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP
’21). Association for Computing Machinery, New York, NY, USA, 234–246. https://doi.org/10.1145/3437801.3441621

[9] P. Sao, X. Liu, R. Vuduc, and X.S. Li. 2015. A Sparse Direct Solver for Distributed Memory Xeon Phi-accelerated Systems. In 29th IEEE International
Parallel & Distributed Processing Symposium (IPDPS). Hyderabad, India.

[10] P. Sao, R. Vuduc, and X. Li. 2014. A Distributed CPU-GPU Sparse Direct Solver. In Proc. of Euro-Par 2014, LNCS Vol. 8632, pp. 487-498. Porto, Portugal.
[11] P. Sao, R. Vuduc, and X. Li. 2019. A communication-avoiding 3D algorithm for sparse LU factorization on heterogeneous systems. J. Parallel

and Distributed Computing (September 2019). https://doi.org/10.1016/j.jpdc.2019.03.004 https://www.sciencedirect.com/science/article/abs/pii/
S0743731518305197.

[12] I. Yamazaki and X.S. Li. 2012. New Scheduling Strategies and Hybrid Programming for a Parallel Right-looking Sparse LU Factorization on Multicore
Cluster Systems. In Proceedings of IEEE International Parallel and Distributed Processing Symposium (IPDPS 2012). Shanghai, China.

22

https://doi.org/10.1145/3437801.3441621
https://doi.org/10.1016/j.jpdc.2019.03.004
https://www.sciencedirect.com/science/article/abs/pii/S0743731518305197
https://www.sciencedirect.com/science/article/abs/pii/S0743731518305197

	Abstract
	Contents
	1 Overview of SuperLU and SuperLU_DIST
	2 3D Communication-Avoiding Routines
	2.1 The 3D Process layout and its performance impact

	3 OpenMP Intra-node Parallelism
	3.1 OpenMP Performance tuning

	4 GPU-enabled Routines
	4.1 2D SpLU GPU algorithm and tuning parameters
	4.2 3D SpLU GPU algorithm and tuning parameters
	4.3 2D SpTRSV GPU algorithm

	5 Mixed-precision Routines
	6 Summary of Parameters, Environment Variables and Performance Impact
	6.1 3D CPU SpLU parameter tuning
	6.2 2D GPU SpLU parameter tuning
	6.3 3D GPU SpLU parameter tuning

	7 Fortran 90 Interface
	8 Installation with CMake or Spack
	8.1 Dependent external libraries
	8.2 CMake installation
	8.3 Spack installation

	Acknowledgments
	References

